翻訳と辞書
Words near each other
・ System 7 (album)
・ System 7 (band)
・ System 7 (disambiguation)
・ System 8
・ System 80
・ System access fee
・ System accident
・ System Addict
・ System administrator
・ System Administrator Appreciation Day
・ System Alliance Europe
・ System analysis
・ System anatomy
・ System appreciation
・ System archetype
System Architecture Evolution
・ System area code
・ System area network
・ System Basis Chip
・ System bus
・ System call
・ System camera
・ System catering
・ System Center Advisor
・ System Center Configuration Manager
・ System Center Data Protection Manager
・ System Center Essentials
・ System Center Mobile Device Manager
・ System Center Operations Manager
・ System Center Service Manager


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

System Architecture Evolution : ウィキペディア英語版
System Architecture Evolution
System Architecture Evolution (SAE) is the core network architecture of 3GPP's LTE wireless communication standard.
SAE is the evolution of the GPRS Core Network, with some differences:
* simplified architecture
* all-IP Network (AIPN)
* support for higher throughput and lower latency radio access networks (RANs)
* support for, and mobility between, multiple heterogeneous access networks, including E-UTRA (LTE and LTE Advanced air interface), 3GPP legacy systems (for example GERAN or UTRAN, air interfaces of GPRS and UMTS respectively), but also non-3GPP systems (for example WiFi, WiMAX or cdma2000)
==SAE Architecture==

The SAE has a flat, all-IP architecture with separation of control plane and user plane traffic.
The main component of the SAE architecture is the Evolved Packet Core (EPC), also known as SAE Core. The EPC will serve as the equivalent of GPRS networks (via the Mobility Management Entity, Serving Gateway and PDN Gateway subcomponents).
The subcomponents of the EPC are:〔(3GPP TS 23.002: Network architecture )〕〔LTE White Paper〕
* MME (Mobility Management Entity): The MME is the key control-node for the LTE access-network. It is responsible for idle mode UE (User Equipment) paging and tagging procedure including retransmissions. It is involved in the bearer activation/deactivation process and is also responsible for choosing the SGW for a UE at the initial attach and at time of intra-LTE handover involving Core Network (CN) node relocation. It is responsible for authenticating the user (by interacting with the HSS). The Non Access Stratum (NAS) signaling terminates at the MME and it is also responsible for generation and allocation of temporary identities to UEs. It checks the authorization of the UE to camp on the service provider’s Public Land Mobile Network (PLMN) and enforces UE roaming restrictions. The MME is the termination point in the network for ciphering/integrity protection for NAS signaling and handles the security key management. Lawful interception of signaling is also supported by the MME. The MME also provides the control plane function for mobility between LTE and 2G/3G access networks with the S3 interface terminating at the MME from the SGSN. The MME also terminates the S6a interface towards the home HSS for roaming UEs.

* SGW (Serving Gateway): The SGW routes and forwards user data packets, while also acting as the mobility anchor for the user plane during inter-eNodeB handovers and as the anchor for mobility between LTE and other 3GPP technologies (terminating S4 interface and relaying the traffic between 2G/3G systems and PGW). For idle state UEs, the SGW terminates the downlink data path and triggers paging when downlink data arrives for the UE. It manages and stores UE contexts, e.g. parameters of the IP bearer service, network internal routing information. It also performs replication of the user traffic in case of lawful interception.
* PGW (PDN Gateway): The PDN Gateway provides connectivity from the UE to external packet data networks by being the point of exit and entry of traffic for the UE. A UE may have simultaneous connectivity with more than one PGW for accessing multiple PDNs. The PGW performs policy enforcement, packet filtering for each user, charging support, lawful interception and packet screening. Another key role of the PGW is to act as the anchor for mobility between 3GPP and non-3GPP technologies such as WiMAX and 3GPP2 (CDMA 1X and EvDO).
* HSS (Home Subscriber Server): The HSS is a central database that contains user-related and subscription-related information. The functions of the HSS include functionalities such as mobility management, call and session establishment support, user authentication and access authorization. The HSS is based on pre-Rel-4 Home Location Register (HLR) and Authentication Center (AuC).
* ANDSF (Access Network Discovery and Selection Function): The ANDSF provides information to the UE about connectivity to 3GPP and non-3GPP access networks (such as Wi-Fi). The purpose of the ANDSF is to assist the UE to discover the access networks in their vicinity and to provide rules (policies) to prioritize and manage connections to these networks.
* ePDG (Evolved Packet Data Gateway): The main function of the ePDG is to secure the data transmission with a UE connected to the EPC over an untrusted non-3GPP access. For this purpose, the ePDG acts as a termination node of IPsec tunnels established with the UE.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「System Architecture Evolution」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.